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Two problems are treated with a common formulation: the effect of a sinusoidal load (with 

a time factor of the form exp 4 WC ) transmitted through a weightless (and inertialess) rigid 

punch of circular planform lying on the homogeneous isotropic half-space (t > 0). The 

vibrations are steady-state, and the effect of the static load is not considered, it being 

assumed that its magnitude is sufficient to maintain contact in the case where the punch is 

not joined to the half-space. For brevity, henceforth when we speak of vectors (or their 

projections), we shall mean their amplitudes. The actual values are obtained by multi- 

plying by exp (i W: ). In the fundamental mixed problem it is required to find, for a known 

distribution of the diaplacemen vector w (w, ucr, u,. ) in the region of contact 0, the dis- 
tribution of the force vector p t p, t x, t } b rs the pressure, tx, c 

forces) in this region. In particular, if t h ere is bonding, ug = IA = 

(a punch without friction and bonding) we have I, = t 
Y 

= 0, an 
J* rX 

the tangential 

In the other problem 

rt is required to find only 

p=p(x,y)foraknownw=w(x,y)inthe regionn. 

A unified treatment of these problems is given in deriving the integral equations and 

developing an approximate method for their solution (which is applied to the second 

problem). 

1. The proposed method consists of the following. The system of equations of the 

fundamental mixed problem (in vector notation, of course) takes the form 

w (r) = cs K (r - r’) p (r’) dS, rE Q 

‘n 
(1.1) 

Here K (r - r’) is the difference matrix kernel. The columns (K”, K r, K’) of the matrix 

K (r) represent the displacement vectors due to the effects of concentrated unit forces 

applied at the origin and directed along the axes z, x, y, respectively. It is therefore clear 

that the kernel K (r) is singular (with P weak singularity). By separating out the singularity 

it is possible to reduce (1.1) to s system of equationsof the second kind. It will sub- 

sequently be shown that the terms in K (r) containing singularities correspond to the static 

problem. Therefam .If the solution of the static problem is known, then the transition to a 

system of equations of the second kind can in fact be carried out. In order to find K (r) we 
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Elastic half-space vibration 645 

solve the following system of Lamd equations (in rectangular coordinates) 

(h + p) v div w + PAW + @W = 0 (p is the density of the 

elastic medium) 

for the conditions 

(1.2) 

The calculations lead to the following result: 

P= PT 

[ 1 
+a2 +ca w = KP, 1 

T; ’ K = 4-P ss 
da dfi exp i (ax + By) X 

--co --a3 

E (r2), iat3 h2h w W) 
x - iae (yy, ‘l2H (‘r) + V2 (a2 - fJ2) Z W), aSz (r*) (1.4) 

- $0 (r2), aSz (r2), li2H (r2)-‘1, (a*--@) ~(72) 1 (r= l/c@+ IPI 
The functions E , 0, H, Z of the argument y’ appearing here represent the quotients 

obtained by dividing the functions E, , @I,, H,, Z,, whose expressions are given below, 

by the product (~2 - k,2)‘/zI? (~9, h w ere R is the Rayleigh function 

R (r2) = (2ya - kz2) - 4~2 (~2 - Ic,?)~/z (~8 - k&“’ (1.5) 

(k, and k, are wave numbers). 

The expressions for E+,@+, H,, Z, are 

E, (~2) = - kc (r2 - klz)“’ (r2 - ka2)“‘, H, (y2) = R (-r*) - 4* (?’ - ha) 
(1.6) 

8, (~2) = (2~2 - kz2) (ya - k22)“’ - 2 (r2 - kze) (ya - kla)“’ 

722, W) = - R (P) - kz2 (r2 - k22) (k, = o -f/p / (11 + 2~), kz = 0 ‘t/P /P) 

The radicals appearing in these formulasare single-valued functions of y on the 

Riemann surface consisting of four sheets, corresponding to the four sign combinations. 

The sheets are joined along a cut which is drawn in an appropriate manner. We will use 

a set of cuts which was applied by A. Sommerfeld to a problem of radio-wave propagation 

[l] (p. 945). The double Fourier integral in (1.4) may be reduced to a single integral by 

transforming to polar coordinates in the CL, p plane and performing the integration over the 

angular variable. In this calculation and in the sequel it is convenient to deal not directly 

with the vector displacements and forces, but rather with the following complex combina- 

tions of them 

2~‘~ = u + iv, w2 = u - iv, t, = t, + it,, t, = t, - it, (1.7) 

Then 
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Expressing the integrals in polar coordinates, we obtain 

m 

A (xv Y) = 2& 1 W 
0 

where 
2 = 2 + iy, Z = x - iy, r = 12 1 = Jfx2 + y2 

There is no danger of confusion with the spatial coordinate z , since the latter never 

appears in the formulas. To calculate the asymptote of this kernel, one may, as shown in 

[II, transform to the interval (- 00, + oo) in the Hankel functions H(r) (yr), using the 

relation of the circuits. .4 formula for i\ (a, y) is then obtained which differs from (1.9) by 

the multiplier in front of the integral: 1/4nu instead of 1/2np, whereas the Hankel 

function H(l) (yr) with the corresponding indices will appear in the integrands. We will 

not write out this formula, since we do not aim to present a complete detailed treatment of 

the asymptote. We note only that for a concentrated normal force P = (P, 0, 0 1 the asymp- 

totic displacement was investigated by Lamb [Zl. W e also note that in calculating the 

integrals the original path of integration (- 00, -/- co) is deformed, remaining in the upper 

half-plane. As a consequence of this the integral includes the contribution of the pole 

associated with the root of the equation R (~2) = 0 in the right-hand quadrant. In cal- 

culating the integrals appearing in (1.9). h owever, this pole is bypassed from above; thus 

each of these integrals is equal to the principal value minus the product of in and the 

residue corresponding to this pole. Hence the vector equation (1.1) reduces to 

(E, ‘1) dE dq (1.10) 

2. For arbitrarily shaped regions n, there is no effective analytical method of solving 

these two-dimensional equations. A simplification is possible for the case of a circular 

region, however. With this aim we expand the force vector (p, tr, te) in a Fourier series in 

eid 

@, $., 63) = 5 (I,, (r), gm (r), h, (r)) eime 

--CC (2.1) 

For each of the components t,, = gm (r) eime, L?l = h, (r) e into we have 

t 
1m 

= [g, (r) .+ ih, (r)] oifm+lJe, t?, = [g, (r) - ihm (r)l f.?i(m-l)Q (2.2) 

We note further that 

w1 = u + iv = (ur + iu,) eie, 70, = u - iu = (ur - iu,) 8’ 

Introducing these values in (l.lO), where .z should be replaced by z - i = reio - pei* 

etc. we perform the integration over the angle $J with the help of Graf’s addition theorem 

[31 (p. 392). W e give only the result of the calculation 
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Rere the index m denotes the Fourier coefficient (of eime). The kernel Afm) is * 

matrix with the following elements: 
03 co 

4,tjm) = 2 s E W) Jr,, (~4 J,(YP) T d-r, AZ,(~) = s 0 W) Jm_l hr) J, (w) T’ti 
0 0 

Azlcm) = - 
s 

2 h2) Jm+l (TP) Jm+I (Tr) ‘fa dr 

0 
(2.4) 

The remark made at the end of the first section holds for the calculation of these 

integrals. It would have been possible here to express (tu, ur, r& directly in terms of 

Cf. gs h lrn , but the formulas for the elements of the kernel would then have been com- 

plicated. The notation would be even more complicatedif we went from the complex form 

of the Fourier series to the real form. Only in the case m = 0 is there a simplification 

(the subscript m = 0 is omitted here). In these equations 
co 

K,, = - 
5 

kz2 (r2 - k12)“’ 

R (P) 
JO (v) JO (YP) TM 

0 

cc 

K,, = - c k2 W - b?) 
R (r2) 

J, (‘r4 J, (TP) ‘r dy, 

b 

KOI = JPe (P) Jo h4 J1 (‘rp) dr 

0 
(2.6) 

03 

Kt, = s T2e W) JO (w) JI 04 &, K _ O” JI (~4 JI (YP) 7 dr 
31 - 

s 
0 

o (rS - k,a)‘j* 

Equations (2.5) may be considered as the equations of the axisymmetric problem, 

where the first of equations (2.5) d escribes the indentation of the punch, while the second 

describes torsion (the Reissner-Sagoci problem). The resolution of the system of integral 

equations into two independent systems corresponds to the decomposition of the system of 

Lam; equations in the axisymmetric case. The vanishing of R (ya) in the second of equa- 

tions (2.5). which is clear from the physical point of view, depends on the fact that as a 

consequence of formula (1.6) we have 

H (r2) - @ (r2) = 2 (y2 - ks2)“’ 
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The solution of the system (2.3) even in the simplest axisymmetric case (2.5) turns 

on the absenceof any simple exact solution of the static problem. Cumulative approximate 

quadraturea will unavoidably reduce the accuracy of any numerical algorithm. Therefore we 

will restrict the description of such au algorithm to the problem of indentation of a punch 

without friction and bonding. 

3. In the case g,,, = h, = 0 we have 

wm (r) = { 1, (P) PdP TE (Y) J,,, (Yr) J, (YP) YdY (3.1) 
0 0 

It is clear that in this equation wm (r ), fm (r ) may be considered to he the coefficients 

of a real Fourier series, i.e. as the coefficients of cos m f? and sin r&l. 

This equation may also be obtained directly from the results of Lamb [2] with the 

help of the addition theorem. The axisymmetric problem without friction and bonding was 

effectively solved by N.M. Rorodachev [41. In that paper Hankel transforms were used to 

reduce the problem to a pair of integral equations. The pair of integral equations were then 

reduced to an equation of the second kind (by the method of N.N. Lebedev) for a certain 

auxiliary function. Calculation of the pressure required additional numerical quadratures. 

The method developed below differs from Rorodachev’s method in that only the single 

equation (3.1) is used, which contains directly the sought-for pressure through the unknown 

functions fm (r ). Equation (3.1) is transformed directly to an equation of the second kind 

by separating out the singularities of the kernel. 

In order to simplify the subsequent calculations we change to dimensionless quantities 

by setting 

r =a2, p = a&, ka = a / a, h = k, / k, f,, (r) = pII,,, CT), I(!,,, (r) fz@)7n (x) 

Making the further substitution y = kp inside the integral (3.1). we obtain 
(3.2) 

9.m (Z) = \ IIm (E) io!Er *%j+ SJ, (USS) J," (ll:S) Cf.7 

0 (3.3) 

j? (a) = (29 - 1) - 49 (r? _ 1)“’ (.$? _ jiZ)‘/Z 

In the neighbourhood of s = J) we have 

- as v/s% - ha 

F (4 = 2 (1 ” h*) - G (s) (G (32) -= I,) 
(3.4) 

Here C is a regular function. Equation (3.3) takes the form 

1 ! cc 

\ &I (E) SdE \ J,,W) J,(EQ dh = 2 (i - ha) . 
0 0 

= %I (z) -e { Ku (5) go% TJ_ (czars) J, (ags) G (s) ds 

(3.5) 

0 0 

The kernel on the left-hand side is a special case of the Weber-Shafkhaitlin integral 
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For the equation 0 

1 

s ‘p 63 w,,(;) (x9 El dE = f (4 
0 

the inversion formula 151 is known 

- 21-r a?Q 

cp(r) = r (i/u (1 + r + p + 4) r (l/e (1 + r 3_ q - p)) ’ 
1 t 

d 

s 

p-P-9& d 

’ dr (t2 _ z2)1/~(1-r+o-p) dt o (ta _ ua)‘/z(l-r+p-91 s 

u’+~ f (u) du 

x 

Substituting this formula into (3.5), we obtain an equation of the second kind 

1 

in which 

(3.6) 

4 (1 - N) xm-’ d 
- 

‘m (2) = - r (m + V2) r (l/J dx d” (3.7) 

Km (x7 Y) = 
2 (1 - 

r trn + l/2) r (l/2) G (s) J, (axs) J,,,+ (ast)(as) ‘A ds } dt 

(3.8) 

4. In the particular case of a plane inclined punch we have 

In this case 

w z wg + pr cos 8 = a (W, -!- px cos cl) 

@ = W@, cPl = @u (0 is the angle of inclination 

of the punch) 

Here it is convenient to transform to the new unknown functions 

H, (x) = II, (x) (1 - x+ t H1 (I) = II, (x) (1 - z$‘* 

Noting that 1 -ha = ?/? (1 - v), we obtain the equations 

1 

Ho (x) = 2wo 
2 

3T (1 - Y) - JL (1 - v) s 
K, (x, y) Hc, (y) dy 

0 

HI (4 = x (r!! ,,) 4x -n (1” y) i KI (x, Y) HI (Y) dy 

(4.1) 

with kernels equal, respectively, to 
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Ke (I, Y) = + (ej)‘” 2 i &f& i G (a) J, (aya) cos (ato) da (4.3) 

0 

‘Ce first consider equation (4.1) with the kernel (4.3). The zeroth approximation to the 

solution of this equation is 

H,(O) = 2we 
7I (1 -v) 

This is related to the solution of the corresponding static problem 

p,(“’ (r) = 
2tL~O 

n (1 - Y) a l/a2 - ra 

In order to find the first approximation we calculate the integral 

1 

s 
0 

K, (2, y) dy = j, (ejh{-&i $&--i G (0) Jo (ay) cos (ata) du}dy 
0 z 0 

Changing the order of integration, we obtain 

1 

\&,(qy)dy= v’-&t&~C(u)cos(a+u)~du} (4.5) 

0 lz b 

To calculate the integral 
00 

1 z 
c 
b 

G (a) cos (am) y da 

we use the theory of residues. We have 

C 
1 

1 = nc (1 - cos auo) co9 am, + 
s 

V (a) (1 - cos au) cos (atu) da 
I 

+ 

0 

-I- i [nc sin au, co9 am, + 1 V (a) sin au cos (atu) do] 

( 

1 
c= -- (WI res G (a) 

Im G (a) 
) v (0) = ~ 

a=0. au 1 

where a0 is the root of the Rayleigh equation F (01 = 0. 

Now the function I = 1 (a, t ) may be expanded in a rapidly converging series in even 

powers of t , whose (complex) coefficients, which depend on U, may be expanded in series 

with respect to this parameter 

I (a, t) = i IP, (a) + i Q,,, (a)1 tarn9 P,n (a) = (-(~~~ i akfm)aab (4 6) . 
WI=0 k=l 



Elastic half-space vibration 

Qm ($ = (-,;Z p”” 2 bk(rWa2k+l ) 

k=l 

b,(m) = (- uk-l [nC(J62m+2k-1 + q*+2k_11’ 
(2k - I)! 

q,,- @+?'du 

0 
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(4.7) 
1 

Substituting for I (CL, t ) in (4.5) its expansion (4.6) and integrating, we have 

1 

c 
. K, (r, Y) dy = i [P, (a) f i Qm (a)1 M, (I) 

4-d' 

m=o 

'lc (4.6) 

M, (4 = 

t2mtl d * 
1: ZG Jfp- za s 

dt = yg 
s 

u sin cp (1 - us sin% T)~ dq 

z 0 

(VI -$=u , VI-P=7) 

The polynomials Mm (x) areof even powers in u and are consequently even-power 

polynomials in z. We give the first few polynomials 

M, (5) = 1, Ml (2) = 2ua - 1, M, (I) = V,u4 f 4u= - i 

M, (x) = la/ GE - 8~’ + 6~2 - 1 (US = 1 - x2) 

It may be shown that 1 M,,, (I) I< const v/m, and consequently the series on the 

right-hand side of equation (4.8) is majorized by the convergent series 

m=O (Pm)! (ao)2" 
; If; 

R'e give below the resultsof calculating the coefficients P, te) and Qrnca) for 

m = 0, I, 2, 3, 4, accurate up to terms in U lo for the case ha = 1/s (A = ~1, v = I/,). 

In this case o. = 1.0877, 3tc = 1.0248.Using the formulas (4.7) and a tableof values of 

Q n for h2 = 1/3, taken from reference [4], we find 

PO (a) = 1.0068~~ - 0.07913a4 + 0.002665ae - 0.00005433$ + .., 

Q. (a) = 2.3243a - 0.3186as + 0.01622aS - 0.0004206ar + . , . 

PI (a) = -$ [0.9495a2 - O.O7986a* f 0.000312a6 - . . .] 

Q1 (a) = - T [1.9113a - 0.3244a3 + 0.01766as - 0.0004761a’ + . . .] 

P, (a) = $ [0.9583a2 - 0.09361a4 -fi- 0.003560a6 - . . . 

ak 
Qz (a) = q-[1.9466a - 0.3533as + 0.01996a6 - . . .] 

P, (a) = - $ [1.1232a2 - 0.1068a4 + . . .] 

Q3 (a) = - $ 12.1199a - 0.3858aS + . . .I 

a8 ' 
P4 (a) = -g- [1.2816a2 - . . .], 

as 
Q4 (a) = m (2.3946a - , . .] 

The first approximation to the solution of equation (4.1) consequently takes the form 

Ho(‘) (4 = ~ (1”: q { 1 - n (1 “_ y) i [p, (a) + i Q,,, (41 Mm (4) f4ag) 
-0 
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The second term in the curly brackets in equation (4.9) is the dynamic correction to 

the solution of the corresponding static problem. 

We consider now equation (4.2) with the kernel (4.4) and seek the solution in the first 

approximation. Calculating the integral 

and changing the order of integration, we obtain 

1 1 m 

K, (x, y) ydy = 1/l - x2"\ %\ G (0) sin (ato)(F - 
dx. l/t2 - x3. 

cy) da (4.10) 

0 x 0 

Applying the theory of residues to the calculation of the inner integral 

M 

11 0% r) = G (0) ‘;,$r 
s (’ 

cos ao 
--- a. sin (ata) ds 

0 

we find 

I, (a, t) = [rtc (sin au0 - I - z: ““) sin (au& + 

i- i V (a) (sin au - ’ -,“,“” “) sin (at@ da] -/- 

0 

+ ijnc (00s aoo-s~)sin (ao,$) + iv (0) (~0, t.J _ e),i, @a) da] 

0 

Expanding now the function I, (at) in powers of t and the a-dependent coefficients 

of the resultant series in powers of CL, we obtain 

1, (a, r) = 5 [Pa, (a) + iQk (a)] t2m-1 (4.11) 

m=1 

,,w = (- I)“-’ 
(2/( - 2) ! 2k (no% 

2mt2k-2 + Y 
2m+2k-2) C&l) 

dkcrn) = (- iy-* 

(2k - 3) ! (2k - 1) Wr” 
2m+2k-3 + Y2n1+2h._J, &cm) z 0 

Substituting for I, (CL, t ) in (4.10) its expansion (4.11) and integrating, we obtain 

1 

1 KI (I, y) ydy = 2 fPf,(a) ;f ia",, (a)lM,_, (x) 
0 rn=l 

We quote the expansionsof the first few coefficients PC (a) and Q;(a) for 

h2 = ‘13 (Y = l/r) 
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P”1 (a) = G (1.0068a - 0.2374as + 0.01331~~ - 0.00039OOa’ + . . .] 

Q"1 (a) = $ [-- 0.6371az + 0.06489a4 - 0.002524~~~ + 0.00005279ae - . . .] 

Pi (a) = $ iO.94950 - 0.2398as + 0.01560a6 - 0.000445Oa’ + . . .] 

Q; (a) = $ [- 0.6489a2 + 0.07066~~ - 0.002851a6 + . . .] 

& (a) = $- [0.9583a - 0.2808~~ + 0.01780~~ - . . .] 

Qi (a) = gr [ -0.7066aa + 0.07982a’ - . . .] 

Pi (a) = T - a7 [l.l232u - 0.3204as + . . .], Qi (a) = -4 [-0.7982aa + . . .] 

The first approximation to the solution of equation (4.2) consequently takes the 

form 

W f&(l) (4 = a (I - v) 
t 1 - It (I 2_ v) i [Pk (a) + iQ& WI Mm_, CT)} z 

mz_1 

Here, as in (4.9), the second term is the dynamic correction to the solution of the 

corresponding static problem. We note that in obtaining the subsequent approximations, 

the same integrals will be encountered, except in place of sin CLCT/QU in the integrals 

I (u, t ) and f 1 (u, t ), there will be .f,,,+,,, (uu) / (r~a)“+‘ls. 

Thus in principle the subsequent approximations are foundin a similar manner, but the 

amount of calculation increases considerably. 

1. 

2. 

3. 

4. 

5. 
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